• Accueil
  • Math
  • Find the indicated sum of the geometric series on...

Find the indicated sum of the geometric series

on the first swing, pendulum makes an arc 8 in. long. on each successive swing, the arc is 1/4 the length of the preceding arc. find the total distance the pendulum has travelled at the end of the fourth swing?

pls. me to solve this problem

Answers

  • Réponse publiée par: enrica11

    1.) S7 = 6554

    2.) S8 = 255

    3.) ??

    4.) S15 = 6990.24

    5.) ??


    Find the indicated sum of the geometric series 1.)find the first terms s7 of the geometric sequence
    Find the indicated sum of the geometric series 1.)find the first terms s7 of the geometric sequence
    Find the indicated sum of the geometric series 1.)find the first terms s7 of the geometric sequence
  • Réponse publiée par: 09389706948

    3. Write a geometric series for each geometric sequence.

    a) 1, 4, 16, 64, 256, . . . b) 20, -10, 5, -2.5, 1.25,...

    4. Which series appear to be geometric? If the series could be geometric,

    determine S5.

    a) 2 + 4 + 8 + 16 + 32 + ... b) 2 - 4 + 8 - 16 + 32 - ...

    c) 1 + 4 + 9 + 16 + 25 + ... d) -3 + 9 - 27 + 81 - 243 + ...

    A

    1 4 16 64 256 . . . 20  10 5  2.5 1.25  ...

    The series could be geometric.

    S5 is: 2 4 8 16 32  62

    The series could be geometric.

    S5 is: 2  4 8  16 32  22

    The series is not geometric. The series could be geometric.

    S5 is: 3 9  27 81  243  183

    Step-by-step explanation:

  • Réponse publiée par: brianneaudreyvuy

    8 and 8/9 or 8.89

    Step-by-step explanation:

    S=6(1-r⁴)/1-r

    =6(1-1/81)/1-1/3

    =6(81/81-1/81)/3/3-1/3

    =6(80/81)/2/3

    =480/81/2/3

    reciprocal 2/3 and multipy with 240/81

    =480/81 time 3/2

    =1440/162

    divide both side by 9

    =160 and 18

    divide boths side by 2

    =80 and 9

    =80/9

    =8 and 8/9 or 8.88888888889 or 8.89

  • Réponse publiée par: kuanjunjunkuan

    answer:

    (-9)+6+(-4)

    -7

    Step-by-step explanation:

    sana naka tulong po

  • Réponse publiée par: 09389706948

    find the sum of each geometric sequence

    1. 2+4+8+16+32

    S _{5} =  \frac{a_{1} ( {r}^{n}  - 1)}{r - 1}

    \:  \:  \:  \:  \:  \:  =  \frac{2( {2}^{5} - 1) }{2 - 1}

    \:  \:  \:  \:  \:  \:  =  \frac{2(31)}{1}

    S_{5} =  \frac{62}{1}  = 62

    2. 3+9+27+81

    S _{4} =  \frac{a_{1} ( {r}^{n}  - 1)}{r - 1}

    \:  \:  \:  \:  \:  \:  =  \frac{3 ( {3}^{4}  - 1)}{3 - 1}

    \:  \:  \:  \:  \:  \:  =  \frac{3 (80)}{2}

    S_{4} =  \frac{240}{2}  = 120

    find the indicated sum of the geometric series

    11. 8-16+32+...,S8

    S _{8} =  \frac{a_{1} ( {r}^{n}  - 1)}{r - 1}

    \:  \:  \:  \:  \:  =  \frac{8 ( {2}^{8}  - 1)}{2 - 1}

    \:  \:  \:  \:  \:  =  \frac{8 ( 255)}{ 1}

    S_{8} = {2040}

    12. 3+12+48+...,S10

    S _{10} =  \frac{a_{1} ( {r}^{n}  - 1)}{r - 1}

    \:  \:  \:  \:  \:  =  \frac{3 ( {4}^{10}  - 1)}{4 - 1}

    \:  \:  \:  \:  \:  =  \frac{3 (1048575)}{3}

    S_{10} = {1048575}

    13. 4+2+1+..., S10

    S _{10} =  \frac{a_{1} ( {r}^{n}  - 1)}{r - 1}

    \:  \:  \:  \:  \:  =  \frac{4 ( { \frac{1}{2} }^{10}  - 1)}{ \frac{1}{2}  - 1}

    \:  \:  \:  \:  \:  =  \frac{4 ( \frac{1}{1024} )}{  - \frac{1}{2} }

    \:  \:  \:  \:  \:  =  \frac{ \frac{4}{1024} }{  - \frac{1}{2} }

    \:  \:  \:  \:  \:  \:  =  \frac{4}{1024}  \times -   \frac{2}{1}  =  -  \frac{8}{1024}

    S_{10} = -   \frac{1}{128}

  • Réponse publiée par: kurtiee

    Step-by-step explanation:

    S8=36(1/6^8-1)

    r-1/6

    36(0.999999404)

    -1/6

    -35.99997857

    -1/6

    215.9998714

  • Réponse publiée par: cbohol56

    The answer is there is no sum because you cant solve for the sum of this series because the ratio is greater than 1.

Connaissez-vous la bonne réponse?
Find the indicated sum of the geometric series on the first swing, pendulum makes an arc 8 in. long...